
Challenges for Compiler Research

The Implications of Increasing Complexity of
Platforms, Languages, and Applications

Ken Kennedy
Rice University

http://www.cs.rice.edu/~ken/Presentations/CompilerChallenges.pdf

Center for High Performance Software Research



Center for High Performance Software Research

Driving Forces

� Platform Complexity
�Parallelism
�Memory hierarchy
�Grids

� Application Complexity
�Sheer size
�Diversity of components, languages, paradigms
�Application composition

� MADIC study: 10,000 apps, untrusting developers
�Need for software reliability

� Shortage of Professional Developers
�Need for greater productivity



Center for High Performance Software Research

Implications I

� Many traditional compiler decisions will be made late
�Grid: Target platforms known just before execution

� May need to change during execution
� Applications will need to adapt (but should the user do this)

�Optimizations may be determined at run time
� In response to problem data

� Compilation is becoming a process consisting of many steps
�Steps take place at different times in the program preparation

process
� When procedure compiled
� When program defined
� When platform(s) determined
� When data known



Center for High Performance Software Research

Dynamic Optimization

CompilerCompiler

ApplicationApplication

ProgramProgram



Center for High Performance Software Research

Dynamic Optimization

CompilerCompiler

ApplicationApplication

ProgramProgram

Configuration
And Data

Configuration
And Data

Dynamic Optimizer
(Optimizing Loader)

Dynamic Optimizer
(Optimizing Loader)



Center for High Performance Software Research

Dynamic Optimization

CompilerCompiler

ApplicationApplication

ProgramProgram

Rapidly-
Changing Data

Rapidly-
Changing Data

Configuration
And Data

Configuration
And Data

AnswersAnswers

Dynamic Optimizer
(Optimizing Loader)

Dynamic Optimizer
(Optimizing Loader)



Center for High Performance Software Research

Grid Compilation Architecture

� Goal: reliable performance under varying load

Whole-
Program
Compiler

Libraries

Dynamic
Optimizer

Real-time
Performance

Monitor

Performance
Problem

Service
Negotiator

Scheduler

Grid
Runtime
System

Source
Appli-
cation

Config-
urable
Object

Program

Software
Components

Performance 
Feedback

Negotiation

GrADS Project: Berman, Chien, Cooper, Dongarra, Foster, Gannon, 
Johnsson, Kennedy, Kesselman, Mellor-Crummey, Reed, Torczon, Wolski



Center for High Performance Software Research

Compiling with Data

CompilerCompiler

ApplicationApplication

ProgramProgram



Center for High Performance Software Research

Compiling with Data

CompilerCompiler

Reduced 
Application
Reduced 
Application

ProgramProgram

Slowly-
Changing Data

Slowly-
Changing Data



Center for High Performance Software Research

Compiling with Data

CompilerCompiler

Reduced 
Application
Reduced 
Application

ProgramProgram

Rapidly-
Changing Data

Rapidly-
Changing Data

Slowly-
Changing Data

Slowly-
Changing Data

AnswersAnswers



Center for High Performance Software Research

Run-Time Compilation

CompilerCompiler

ApplicationApplication

ProgramProgram



Center for High Performance Software Research

Run-Time Compilation

CompilerCompiler

ApplicationApplication

ProgramProgram

Slowly-
Changing Data

Slowly-
Changing Data Pre-OptimizerPre-Optimizer



Center for High Performance Software Research

Run-Time Compilation

CompilerCompiler

ApplicationApplication

ProgramProgram

Rapidly-
Changing Data

Rapidly-
Changing Data

Slowly-
Changing Data

Slowly-
Changing Data

AnswersAnswers

Pre-OptimizerPre-Optimizer



Center for High Performance Software Research

Implications II

� Need to provide support for application migration across
platforms
�Self-tuning applications

� Examples: Atlas, FFTW, �
�Throw computer time at the problem

� Need to involve the end user in application development
�More focus on high-level domain-specific programming systems

� Example: popularity of Matlab
�Strategy: High-level programming systems based on libraries coded

by experts
�Problem of performance

� Optimizations should treat libraries as language primitives



Center for High Performance Software Research

Telescoping Languages

L1 Class
Library

L1 Class
Library



Center for High Performance Software Research

Telescoping Languages

L1 Class
Library

L1 Class
Library

Compiler
Generator
Compiler
Generator

L1 CompilerL1 Compiler

Could run for hours



Center for High Performance Software Research

Telescoping Languages

L1 Class
Library

L1 Class
Library

ScriptScript

Compiler
Generator
Compiler
Generator

L1 CompilerL1 CompilerScript
Translator
Script

Translator

Optimized
Application
Optimized
Application

Vendor
Compiler
Vendor
Compiler

Could run for hours

understands
library calls
as primitives



Center for High Performance Software Research

Implications III

� Compiler technology can play a role in reliability
�Reliability and security of networked systems must be a national

priority
�Many security and reliability problems arise from hand optimizations

in context
� Example: stack overflow in server software

�Compilers can perform many of these optimizations mechanically on
carefully coded modules intended for general use
� If we can make compiler technology reliable



Center for High Performance Software Research

Summary

� Target platforms and applications continue to become more
complicated
�Complexity for compiler
�Complexity for user

� Shortage of programming talent
�Throw computer time at the problem of platform migration
�Involve end users in programming
�Use experts for components, compilers for optimization

� Reliability and security must be increased
�Mechanical optimization in context can help

� But only if compilers can be made reliable


